162. Spectra of Acetals. Part II.* The Infrared and Raman Spectra of Substituted 1:3-Dioxolans.

By S. A. Barker, E. J. Bourne, R. M. Pinkard, and D. H. Whiffen.

Assignments have been made for some of the frequencies of several substituted 1:3-dioxolans; a few of the vibrational modes were not identifiable. The hydroxyl group in 4-hydroxymethyl-2:2-dimethyldioxolan has been deuterated, enabling the frequencies associated with this group to be identified. Some assignments, based on this work, have been suggested for three hexitol ketals.

Ethylidene and isopropylidene acetals of ethylene and propylene glycol, which were all methyl-substituted dioxolans, were chosen for study since the effect, on the spectra, of substitution at each position in the dioxolan ring could then be observed since the methyl groups gave comparatively few and well-known characteristic frequencies. 4-Hydroxy-methyl-2 : 2-dimethyldioxolan, together with its O-deutero-analogue and its methyl ether, were studied to observe the effect of the hydroxyl group, for correlation with the spectra of the sugar acetals and ketals.

Experimental

Preparation of Substituted Dioxolans.-2-Methyl-1 : 3-dioxolan, prepared by Hibbert and Timm's method, ${ }^{1}$ had b. p. $82^{\circ} / 751 \mathrm{~mm}$.

4-Methyl-1:3-dioxolan, obtained by condensation of propylene glycol and paraformaldehyde in the presence of syrupy orthophosphoric acid, ${ }^{2}$ had b. p. $84^{\circ} / 736 \mathrm{~mm}$.

An exchange reaction between acetaldehyde dipentyl acetal and propylene glycol, as performed by Lucas and Guthrie, ${ }^{3}$ was used to afford the stereoisomers of 2:4-dimethyl-1 :3dioxolan. The separation of the isomers, their physical constants, and the assignment of configurations have been described elsewhere. ${ }^{4}$

2: 2-Dimethyl-1 : 3-dioxolan, prepared by the method of Dworzak and Hermann, ${ }^{5}$ had b. p. 92°.

2:2:4-Trimethyl-1:3-dioxolan, obtained ${ }^{6}$ by condensing acetone with propylene glycol, had b. p. 101°.

Azeotropic distillation was utilised in the synthesis ${ }^{7}$ of 4 -hydroxymethyl-2:2-dimethyl$1: 3$-dioxolan, b. p. $85^{\circ} / 11 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{20} 1 \cdot 4347$. Reaction with methyl iodide and dry silver oxide ${ }^{8}$ yielded 4 -methoxymethyl- $2: 2$-dimethyl-1 : 3-dioxolan, b. p. $50-51^{\circ} / 19 \mathrm{~mm}$.

To 4-hydroxymethyl-2 : 2-dimethyldioxolan (13.2 g .) dissolved in ether (50 ml .), sodium wire (3 g .) was added. Then the excess of sodium was removed and the ether evaporated. The solid sodium salt was dissolved in deuterium oxide (2 g .), and the solution neutralised with dry carbon dioxide. 4-Deuteroxymethyl-2 : 2-dimethyl-1 : 3-dioxolan was obtained by distillation at $10^{-5} \mathrm{~mm}$.

The spectra of these dioxolans, some of which were racemic mixtures, were measured as described in the preceding paper, and are recorded in the Tables.

Discussion

The assignments for the substituted dioxolans (Table l) have been made by analogy with the assignments for dioxolan given in Part I. In assigning the internal vibrations of the methyl groups, use was made of the review by Sheppard and Simpson ${ }^{9}$ on the spectra

[^0]

$\left.\underset{\text { Antisym. }}{\text { ? Lone } \mathrm{C}-\mathrm{CH}_{2} \text { def. }\left(\mathrm{C}_{2}, \mathrm{C}_{4}\right)} \mathrm{C}_{4} \mathrm{C}_{5}\right)$	1309w *	1307 m	1300s	1303m	1342s *				
? Lone $\mathrm{C}-\mathrm{H}$ def. $\left(\mathrm{C}_{2}, \mathrm{C}_{4}\right)$	1320w-m	1309 m	1300w	1301 m	1347w d *				
Sym. CH_{2} twist ($\mathrm{C}_{4}, \mathrm{C}_{5}$)	1309w *				?				
CH_{2} twist (C_{2})		1246w sh							
		1250w							
gem $-\mathrm{Me}_{2}$ rock					1245s	1243s	1251s	1250s	125lvs
						1249w	$1240 \mathrm{w}-\mathrm{m}$	1259w	
gem- Me_{2} rock					1218vs *	1216vs	1212 vs	1212 vs	1213vs
					1222m*	1220 m d	1210 m -s	1212w-m	
Antisym. CH_{2} twist ($\mathrm{C}_{4}, \mathrm{C}_{5}$)	1217s	1214 m sh	1220s	1224s	1218 vs *				
? Me rock $\left(\mathrm{C}_{2}, \mathrm{C}_{4}\right)$? CH_{2} twist (C_{5})	1219w-m	1216w-m	1218w	1225m	1220 m *				
Ring antisym. stretch	1150 vs	1162vs \{	1162 vs	1153vs	1148vs	1169vs	1158 vs	1157vs	1159vs
			1141vs					1141vs	
	1151w	1149w P \{	$1164 \mathrm{w}-\mathrm{m}$	1153m	-	-	1165vw	1164vw 1139vw	
? Me rock (C_{2})	1118vs		1117 vs	1115vs					
	1120w		1116w	1117w-m					
$\mathrm{C}-\mathrm{O}$ stretch (OH)				117			1074vs		990s *
							1079w d		
Ring sym. stretch	1087vs	1092vs	1083vs	1084vs	1061vs	1096vs	1050vs	1052vs	1052vs
	-	1077w P	1085w	1083m	1064w	1095vw	1051w	1050vw	
Ring sym. stretch	1024vs	1008vs	1022vs	1036vs	1034s	1052 vs	1025sh	1032s sh	1023s sh
	1026 m	1008wm d	1021w-m	1035m	1040vw	1056vw	-	-	
? Ring antisym. stretch	?	?	947 vs	943 s	-	977vs	987vw	973 s	990s*
			947w	942w	955 m	979w-m	967 m	972 mw	
Ring breathing	947vs	939vs	935 vs	926vs	947 vs	945 s	971 m	953 m	972m
								933w	
	947? vs	938m-s P	932w	923w	946 ? vs	947 w	955 m	951w	
? $\mathrm{gem}-\mathrm{Me}_{2}$ rock					916 s	920 vs	927 vw	919w	919 m
					919w	919 m	917 m	$915 \mathrm{w}-\mathrm{m}$	
?gem-Me ${ }_{2}$ rock					$893 \mathrm{~s}$	873s	$877 \mathrm{~m}$	890 w	879 m
					889 vw	876w	865w P	868w P	
? CH_{2} rock ($\mathrm{C}_{4}, \mathrm{C}_{5}$)	863vs	$\begin{aligned} & \text { 897s } \\ & 901 \mathrm{w} \end{aligned}$	858 vs 855w	$\begin{aligned} & \text { 858vs } \\ & 858 \mathrm{w} \end{aligned}$					
gem- Me_{2} antisym. $\mathrm{C}-\mathrm{C}$ stretch					837 vs	841vs	843 vs	843 vs	839vs*
					840w	843 vw		836vw	
Me-Ring ($\mathrm{C}_{2}, \mathrm{C}_{4}$) $\mathrm{C}-\mathrm{C}$ stretch	$\begin{aligned} & 838 \mathrm{~m} \\ & 838 \mathrm{vs} \text { P } \end{aligned}$	825 s 830 vs P	$\begin{aligned} & 830 \mathrm{~s} \\ & 826 \mathrm{~s} \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { 822s } \\ & 822 \mathrm{~s} \text { P } \end{aligned}$		841 ? vs *	833vs	843 ? vs	839vs*
gem- Me_{2} sym. $\mathrm{C}-\mathrm{C}$ stretch					782vs	788 vs	791s	790 s	791s
					784vs P	789vs P	792s P	791s P	

$\underset{2: 2-\mathrm{Me}_{2}}{\stackrel{4-\mathrm{MeO}}{2}-\mathrm{CH}_{2}-}$
${ }^{692 \mathrm{vw}}$
${ }_{633 \mathrm{~m}}^{646}$
514 v
1237s
${ }_{2841 \mathrm{~m}}^{2820 \mathrm{~m}}$
291 wm
${ }_{1}^{1082 \mathrm{vw}}$
$\begin{gathered} 2835 \mathrm{~m} \mathrm{P} \\ \hline 189 \mathrm{P}^{189} \end{gathered}$

$\underset{2: 2-\mathrm{Me}_{2}}{\stackrel{4}{2}-\mathrm{HO}_{2}-\mathrm{CH}_{2}}$
$\left\{\begin{array}{l} 648 \mathrm{~m} P \mathrm{P} \\ 635 \mathrm{~m} \end{array}\right.$
513w
$R \mathrm{R}_{\substack{316 \mathrm{w} \\ 381 \mathrm{vw}}}$
420 vw
12910w
3450 vw

d ！dreqs ‘dчs ！rappnoqs＇чs ！proiq＇q
Table 1．（Continued．）

會		
$\ddot{\square}$		

$\sum_{\substack{0 \\ N}}^{\substack{1}}$	$\begin{aligned} & 12 \\ & \text { N1 } \\ & 80 \\ & 80 \end{aligned}$	$\underset{0}{2}$			$\begin{aligned} & \text { م } \\ & \text { E } \\ & \underset{\sim}{10} \end{aligned}$	
					$\stackrel{\text { 号化 }}{ }$	

Assignment In－plane ring def．
In－plane ring def． gem－Me ${ }_{2}$ antisym． $\mathrm{C}-\mathrm{C}$ Me－ring（ C_{2} ） $\mathrm{C}-\mathrm{C}$ def． Me－ring $\left(C_{4}\right) \mathrm{C}-\mathrm{C}$ def． $\underset{\substack{\text { Unassigned }}}{\mathrm{gem}-\mathrm{Me}, \text { sym．} \mathrm{C}-\mathrm{Cdef} .}$
of paraffin hydrocarbons since the arrangement of methyl groups in paraffins containing an internal tertiary carbon atom is analogous to that in methyldioxolans. In paraffins containing an internal quaternary carbon atom it is analogous to that in the gem-dimethyldioxolans.

Vibrations involving Methylene Groups.-Assignments for these were made by strict analogy with those for dioxolan, and many have been discussed in Part I.

Vibrations involving Methyl Substituents.-(a) Bending. The strong infrared band and Raman line at $1450-1460 \mathrm{~cm} .^{-1}$ shown by all methyldioxolans has been assigned to the internal antisymmetrical methyl bending vibration. 2:2-Dimethyldioxolans show an additional strong Raman line at $c a .1430 \mathrm{~cm} .^{-1}$ (corresponding infrared band absent), presumably due to splitting of the antisymmetrical methyl bending frequency of the gemdimethyl group. The very strong infrared band at $c a .1380 \mathrm{~cm} .^{-1}$ in all the methyldioxolans has been attributed to the symmetrical methyl bending vibration.
(b) Rocking. In contrast to the internal methyl bending vibrations the rocking modes of the methyl groups often couple strongly with the skeletal vibrations. The gem-dimethyl rocking vibrations have been assigned to the strong infrared bands near 1250 and $1220 \mathrm{~cm} .^{-1}$; the corresponding Raman lines are of weak or medium intensity. These frequencies are higher than those (1210 and $1190 \mathrm{~cm}^{-1}$) found by Sheppard and Simpson ${ }^{9}$ for paraffins with an internal quaternary carbon atom. The frequency near $1250 \mathrm{~cm} .^{-1}$ is only present in 2:2-dimethyldioxolans. A frequency near $1220 \mathrm{~cm} .^{-1}$ is present in all the substituted dioxolans and can be assigned to a methylene twisting vibration or methyl rocking mode in the compound where there are no gem-dimethyl groups. Further methyl rocking vibrations may be assigned to two of the strong infrared bands at $800-1000 \mathrm{~cm} .^{-1}$, shown by 2:2-dimethyldioxolans. The most probable frequencies are ca. 880, ca. 920, and $c a .980 \mathrm{~cm} .^{-1}$, if the band at $c a .840 \mathrm{~cm} .^{-1}$ is assigned to the antisymmetrical carboncarbon stretching vibration of the gem-dimethyl group (see below).
(c) Stretching. The symmetrical stretching vibration of the 2:2-gem-dimethyl group has been assigned to the very strong polarised Raman line and intense infrared band at $c a .790 \mathrm{~cm} .^{-1}$. This is to be compared with a strong polarised Raman line at $685-750 \mathrm{~cm} .^{-1}$ for the corresponding vibration in the paraffins. ${ }^{9}$ The band at $790 \mathrm{~cm} .^{-1}$ is only present in the spectra of $2: 2$-dimethyldioxolans, in agreement with this assignment. The corresponding antisymmetrical stretching vibration of the gem-dimethyl group has been assigned to the very strong infrared band at $c a .840 \mathrm{~cm} .^{-1}$ (absent in the other substituted dioxolans), but could alternatively be attributed to a rocking mode with one of the other bands between 800 and $1000 \mathrm{~cm} .^{-1}$ assigned to the stretching vibration.

The stretching of the methyl-ring bond $\left(\mathrm{Me}-\mathrm{C}_{(2)}\right.$ or $\left.\mathrm{Me}-\mathrm{C}_{(4)}\right)$ has been assigned to the very strong polarised line at $c a .830 \mathrm{~cm} .^{-1}$. The corresponding vibration in the paraffins ${ }^{9}$ occurs near $815 \mathrm{~cm} .^{-1}$.
(d) Deformations involving methyl groups. As with the stretching vibrations, these deformations can be expected at higher frequencies than corresponding vibrations in the paraffins, e.g., antisymmetrical deformation of the gem.-dimethyl group in dioxolans, weak Raman line at $c a .515 \mathrm{~cm} .^{-1}$ (corresponding vibration in paraffins, ${ }^{9}$ weak Raman line at $480-490 \mathrm{~cm} .^{-1}$). Similarly, the symmetrical deformation of the gem.-dimethyl group in dioxolans has been assigned to the weak Raman line at ca. $350 \mathrm{~cm} .^{-1}$, compared with 350 $305 \mathrm{~cm} .{ }^{-1}$ in paraffins. ${ }^{9}$

The polarised Raman line of medium intensity near $515 \mathrm{~cm} .^{-1}$ in 2 -methyldioxolan and cis- and trans-2 : 4-dimethyldioxolan has been assigned to the $\mathrm{C}-\mathrm{C}$ deformation of a 2methyl group. This compares with a medium-intensity Raman line at $415-450 \mathrm{~cm} .^{-1}$, assigned to the corresponding vibration in the paraffins. ${ }^{9}$ When the methyl group is on a carbon atom (position 4) attached to one oxygen atom rather than two, the deformation vibration in the dioxolans drops to $c a .470 \mathrm{~cm} .^{-1}$. This frequency is absent in 2 -methyl- and 2: 2-dimethyl-dioxolans, in agreement with this assignment.

C-H Deformations.-The deformation of the single hydrogen on a tertiary carbon does
not usually give rise to strong features in either the Raman or infrared spectra of paraffin hydrocarbons, where they occur at $1330-1360 \mathrm{~cm} .^{-1}$ and $c a .1380 \mathrm{~cm} . .^{-1}$. The very strong infrared band at ca. $1408 \mathrm{~cm} .^{-1}$ has been assigned to one of the deformation modes of the lone $\mathrm{C}-\mathrm{H}$ group in position 2 of dioxolans. The intensity of this band is considerably enhanced and the frequency increased by the adjacent oxygen atoms. This band is only present in 2-methyl- and cis- and trans-2 : 4-dimethyl-dioxolans. The other $\mathrm{C}-\mathrm{H}$ deformation vibration can probably be given the frequency near $1300 \mathrm{~cm} .^{-1}$ although this also occurs in the 4 -substituted dioxolans and might alternatively be assigned to a twisting vibration. However, the lower-frequency vibration is perhaps less affected by the oxygen atoms and occurs at a similar frequency for 2 - and 4 -substituted dioxolans. The higherfrequency $\mathrm{C}-\mathrm{H}$ deformation (position 4) has not beeen observed, presumably because it is overlaid by the symmetrical methyl bending vibration at $1380 \mathrm{~cm} .^{-1}$.

Vibrations involving a Hydroxymethyl Substituent.-Assignments for the O-H deformation and the $\mathrm{C}-\mathrm{O}$ stretching vibration of hydroxyl groups have been discussed by Stuart and Sutherland, ${ }^{10}$ who suggested the assignment of a band at $950 \mathrm{~cm} .^{-1}$ to the out-of-plane $\mathrm{O}-\mathrm{H}$ deformation, a band at $1370 \mathrm{~cm} .^{-1}$ to the in-plane deformation, and a band at $1110 \mathrm{~cm} .^{-1}$ to the $\mathrm{C}-\mathrm{O}$ stretching vibration coupled with other skeletal vibrations.

Comparison of the spectra of 4-hydroxymethyl- and 4-deuteroxymethyl-2:2-dimethyldioxolan showed that the band at $1074 \mathrm{~cm} .^{-1}$ disappeared from the spectra of the former and was replaced by a band at $990 \mathrm{~cm} .^{-1}$ in 4 -deuteroxymethyl-2:2-dimethyldioxolan. The band at $1074 \mathrm{~cm} .^{-1}$ has therefore been assigned to the $\mathrm{C}-\mathrm{O}$ stretching vibration. That this frequency is somewhat lower than that observed by Stuart and Sutherland ${ }^{10}$ may be due to hydrogen-bonding to the ring-oxygen atoms. The bands found by them at $c a .1370$ and $950 \mathrm{~cm} .^{-1}$ were very broad, extending over $c a .200 \mathrm{~cm} .^{-1}$ and so have not been detected with the single-beam instrument used in our work.

In the infrared spectra of the pure liquids the $\mathrm{O}-\mathrm{H}$ stretching vibration in 4-hydroxy-methyl-2:2-dimethyldioxolan gives a band at $3430 \mathrm{~cm} .^{-1}$, while the $\mathrm{O}-\mathrm{D}$ stretching vibration produced a band at $2480 \mathrm{~cm} .^{-1}$. In each compound a weak diffuse Raman line is detectable near the frequency of the infrared band. The ratio ($\mathbf{l}: 1 \cdot 38$) of the $\mathrm{O}-\mathrm{H}$ to the $0-\mathrm{D}$ stretching frequency is in good agreement with the theoretical value of 1.41 for a pure stretch.

Ring Vibrations.-The ring vibrations at 1158 and $1087 \mathrm{~cm} .^{-1}$ occur consistently in the substituted dioxolans. Those corresponding to the $1030 \mathrm{~cm} .{ }^{-1}$ symmetrical ring vibration in dioxolan itself show a large variation in frequency, presumably due to coupling of this ring vibration with the vibrations of the substituent groups.

In dioxolans substituted only in the 2 -position, the ring breathing vibration is readily identifiable as a strong polarised Raman line near $940 \mathrm{~cm} .^{-1}$. In the 4 -substituted dioxolans, however, the intensity of the Raman line is considerably less and so can no longer be observed as polarised. The corresponding infrared band is strong for all but 4-hydroxymethyl- and 4-methoxymethyl-2:2-dimethyldioxolan, for which coupling prevents its identification. The variation of intensity of this vibration precludes its use in what might have been a promising method of differentiation of five- and six-membered acetal rings since Raman spectra of 1:3-dioxolan and 1:3-dioxan showed that the ring breathing frequency of each was the only strong polarised line below $1500 \mathrm{~cm} .^{-1}$ (1:3-dioxolan, 939 $\mathrm{cm} .^{-1}$; I : 3-dioxan, $834 \mathrm{~cm}^{-1}$). Moreover, another difficulty was that 2 -methyl-1:3dioxolan showed a strong polarised line at $837 \mathrm{~cm} .^{-1}$ (due to methyl-ring bond stretching) in addition to the strong polarised Raman line at $947 \mathrm{~cm} .^{-1}$ due to its ring breathing frequency.

The remaining ring stretching vibration (dioxolan, $962 \mathrm{~cm} .^{-1}$) appears to couple strongly, rendering its assignment difficult in the substituted dioxolans.

Assignments for the in-plane ring deformations at ca. 690 and $c a .640 \mathrm{~cm} .^{-1}$ are similar to that for dioxolan itself.

[^1]Table 2. Assignments (cm^{-1}) for three hexitol ketals.

Assignment	iditol 3:4-O-isoPropylidene-mannitol		
Me antisym. bend	1456s	1452s	1458s
Me sym. bend	1378s	1375s	1380s
Lone C-H def.	1336sh	1338 m	1338w
$\mathrm{gem}-\mathrm{Me}_{2}$ rock sym.	1242s	1239s	1258 m - S
gem- Me_{2} rock antisym.	1214s	1218s	1207 m -s
Ring antisym. stretch	1165 s	1167s	1158 m -s
? Skeletal stretch	1119s	1117 s	1129 m -s
$\mathrm{C}-\mathrm{O}$ stretch (OH)	1077s	1073vs	1095m
Ring sym. stretch	1052s	?	1064sh, 1055sh
Ring sym. stretch	1029vs	1034vs	1045vs
Skeletal stretch	1002 vs	1011 s	1022s
? \{ Ring stretch, gem-Me ${ }_{2}$ rock	${ }^{9895}$	981 m	994 m
\{ $\left\{\right.$ gem $-\mathrm{Me}_{2}$ antisym. stretch	952 m - S 878 s	974sh	9570 ${ }^{\text {8 }}$
? $\left\{\begin{array}{l}\text { gem-Me } \\ \text { greck }\end{array}\right.$	856 s		862 s
$\mathrm{gem}-\mathrm{Me}_{2}$ sym. stretch	814 s	814w	806 s
? $-\mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$ rock	716 m	713m-s	721w-m

Hexitol Ketals.-The infrared spectra of the 3:4-O-isopropylidene ketals of L-iditol, D-mannitol, and D-sorbitol were measured over the range $650-1500 \mathrm{~cm} .^{-1}$; the partial assignments of frequencies shown in Table 2 were made by analogy with those for the substituted dioxolans.

With respect to this and the preceding paper, the authors thank Professor M. Stacey, F.R.S., for his interest, one of them (R. M. P.) thanks the University of Birmingham for the award of the Fenwick Scholarship, and they are deeply indebted to the British Rayon Research Association for the loan of a Raman spectrometer.

[^2]
[^0]: * Part I, preceding paper.
 ${ }^{1}$ Hibbert and Timm, J. Amer. Chem. Soc., 1924, 46, 1283.
 ${ }^{2}$ Clarke, J., 1912, 1788.
 ${ }^{3}$ Lucas and Guthrie, J. Amer. Chem. Soc., 1950, 72, 5490.
 4 Barker, Bourne, Pinkard, Stacey, and Whiffen, J., 1958,
 ${ }^{5}$ Dworzak and Herrmann, Monatsh., 1930, 52, 83.
 ${ }^{6}$ Boeseken and Hermans, Rec. Trav. chim., 1923, 42, 1104.
 ${ }^{7}$ Newmann and Renoll, J. Amer. Chem. Soc., 1945, 67, 162
 8 Baer and Fischer, J. Biol. Chem., 1939, 128, 463.
 ${ }^{9}$ Sheppard and Simpson, Quart. Rev., 1953, 7, 19.

[^1]: ${ }^{10}$ Sutherland, Discuss. Faraday Soc., 1950, 9, 261; Stuart and Sutherland, J. Chem. Phys.,1952, 20, 1977; 1956, 24, 559.

[^2]: Chemistry Department, The University, Birmingham, 15.
 Chemistry Department, Royal Holloway College, Englefield Green, Surrey.

